skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bammes, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electron counting can be performed algorithmically for monolithic active pixel sensor direct electron detectors to eliminate readout noise and Landau noise arising from the variability in the amount of deposited energy for each electron. Errors in existing counting algorithms include mistakenly counting a multielectron strike as a single electron event, and inaccurately locating the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, we report a supervised deep learning (DL) approach based on Faster region-based convolutional neural network (R-CNN) to recognize single electron events at varying electron doses and voltages. The DL approach shows high accuracy according to the near-ideal modulation transfer function (MTF) and detector quantum efficiency for sparse images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV electrons versus 0.59 pixel using the conventional counting method. The DL approach also shows better robustness against coincidence loss as the electron dose increases, maintaining the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e−/pixel. Thus, the DL model extends the advantages of counting analysis to higher dose rates than conventional methods. 
    more » « less
  2. null (Ed.)